
A Strategic Approach for Bypassing the Intruder and
Sending Data to Destination using

Three –Tier Framework in Sensor Networks

Veera RaghavaRao Atukuri , Venkata Pavani S,Vasanthi B ,Chandrika M,Naga Swetha M

Department of Computer Science and Engineering

Malineni Lakshmaiah Women’s Engineering College, Pulladigunta (V), Vatticherukuru (M), Guntur (Dt) – 522017.

Abstract – In sensor networks, an intruder (i.e., compromised
node) identified and isolated in one place can be relocated and/or
duplicated to other places to continue attacks; hence, detection
and isolation of the same intruder or its clones may have to be
conducted repeatedly, wasting scarce network resources.
Detecting a compromised sensor, whose memory contents have
been tampered, is crucial in these settings, as the attacker can
reprogram the sensor to act on his behalf. In the case of sensors,
the task of verifying the integrity of memory contents is difficult
as physical access to the sensors is often infeasible. Often There is
solution to find and detect the intruder in sensor network using a
three-tier framework, consisting of a verifiable intruder
reporting (VIR) scheme, a quorum based caching (QBC) scheme
for efficiently propagating intruder reports to the whole network,
and a collaborative Bloom Filter (CBF) scheme for handling
intruder information locally. Which is useful only to find the
attacker in the network and if there is an attacker we didn’t sent
the data..In this paper, we propose a bypassing the data when the
intruder is attacked in the sensor network. By using these three
schemes and finding the different routes in the network and send
the data to destination.

 INTRODUCTION

 A Sensor network is a group of specialized transducers with
a communications infrastructure intended to monitor and
record conditions at diverse locations. Commonly monitored
parameters are temperature, humidity, pressure, wind
direction and speed, illumination intensity, vibration
intensity, sound intensity, power-line voltage, chemical
concentrations, pollutant levels and vital body functions.
Routing. Since a distributed network has multiple nodes and
services many messages, and each node is a shared resource,
many decisions must be made. There may be multiple paths
from the source to the destination. The main performance
measures affected by the routing scheme are throughput
(quantity of service) and average packet delay (quality of
service).

Routing methods can be fixed (i.e. pre-planned), adaptive,
centralized, distributed, broadcast, etc. Perhaps the simplest
routing scheme is the token ring [Smythe 1999]. Here, a
simple topology and a straightforward fixed protocol result in
very good reliability and precomputable QoS. A token passes
continuously around a ring topology. When a node desires to
transmit, it captures the token and attaches the message. As
the token passes, the destination reads the header, and
captures the message. In some schemes, it attaches a
‘message received’ signal to the token, which is then
received by the original source node. Then, the token is

released and can accept further messages. The token ring is a
completely decentralized scheme that effectively uses
TDMA. Though this scheme is very reliable, one can see that
it results in a waste of network capacity. The token must pass
once around the ring for each message. Therefore, there are
various modifications of this scheme, including using several
tokens, etc.

LITERATURE SURVEY

The proposed framework and Routing is composed of the
following three tiers of entities and routing schemes:

On the top tier is a dedicated membership server (DMS),
which aggregates and periodically disseminates intruder
information to the whole network. Due to its critical role, the
DMS may become an attractive target of attacks.
Specifically, the adversary may locate the DMS and then
either compromise the DMS directly or block the
communication between the DMS and the rest of the
network. To protect the DMS, it is not connected to the
network all the time. Instead, it goes online every now and
then at different places randomly. The protection makes it
hard for the adversary to trace, attack, or isolate the DMS.

On the middle tier are intruder information caches (IICs),
which are a small number of sensor nodes picked from all
sensor nodes in the network. They temporarily cache

new intruder information when the DMS is offline. As
ordinary sensor nodes, they could be compromised by the
adversary. If compromised, the intruder information cached
by these IICs may be removed or modified, which is
addressed in our solution through (i) verifying intruder
information to prevent faking or fabricating, and (ii)
duplicating intruder information to maintain high availability
of the information.

On the bottom tier are ordinary sensor nodes, which
collaboratively identify intruders and report intruder
information to IICs. Sensor nodes maintain their own
intruder information based on the periodical updates
disseminated by the DMS, and collaboratively determine the
legitimacy of sensor nodes who join their neighborhoods;
they may also query IICs to obtain latest intruder information
when necessary. Fig. 1. Overview of the proposed
Framework (Dark circles represent IICs and white circles
represent other sensor nodes) To summarize, interactions
between these entities include: Sensor nodes collaboratively
generate intruder reports that can be verified by any other
nodes, and send them to a certain set of IICs. Every time
interval l, the DMS queries IICs to collect the reports for

Veera RaghavaRao Atukuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3754-3756

3754

intruders that have been identified since the previous query,
and then disseminates the IDs of these intruders to all sensor
nodes in a secure manner. Upon receiving it, every sensor
node records these intruders; if the sensor node is also an IIC,
it removes these intruders from its cache (since it is not
necessary to cache the information). When a node joins a
neighborhood, the neighbors can use their own knowledge
about identified intruder to determine if the new arrival is
intruder or not. If the neighbors need more accurate intruder
information (i.e., the information about intruders detected
since last dissemination by the DMS), they may query a
certain set of IICs to obtain

Fixed routing schemes often use Routing Tables that dictate
the next node to be routed to, given the current message
location and the destination node. Routing tables can be very
large for large networks, and cannot take into account real-
time effects such as failed links, nodes with backed up
queues, or congested links.

Adaptive routing schemes depend on the current network
status and can take into account various performance
measures, including cost of transmission over a given link,
congestion of a given link, reliability of a path, and time of
transmission. They can also account for link or node failures.

 Routing algorithms can be based on various network
analysis and graph theoretic concepts in Computer Science
(e.g. A-star tree search), or in Operations Research [Bronson
1997] including shortest-route, maximal flow, and minimum-
span problems. Routing is closely associated with dynamic
programming and the optimal control problem in feedback
control theory [Lewis and Syrmos 1995]. Shortest Path
routing schemes find the shortest path from a given node to
the destination node. If the cost, instead of the link length, is
associated with each link, these algorithms can also compute
minimum cost routes. These algorithms can be centralized
(find the shortest path from a given node to all other nodes)
or decentralized (find the shortest path from all nodes to a
given node). There are certain well-defined algorithms for
shortest path routing, including the efficient Dijkstra
algorithm [Kumar 2001], which has polynomial complexity.

Bidirectional search is a graph search algorithm that finds a
shortest path from an initial vertex to a goal vertex in a
directed graph. It runs two simultaneous searches: Routing
schemes based on competitive game theoretic notions have
also been developed [Altman et al. 2002]. Bidirectional
search is a graph search algorithm that finds a shortest path
from an initial vertex to a goal vertex in a directed graph. It
runs two simultaneous searches: one forward from the initial
state, and one backward from the goal, stopping when the
two meet in the middle. The reason for this approach is that
in many cases it is faster: for instance, in a simplified model
of search problem complexity in which both searches expand
a tree with branching factor b, and the distance from start to
goal is d, each of the two searches has complexity O(bd/2) (in
Big O notation), and the sum of these two search times is
much less than the O(bd) complexity that would result from a
single search from the beginning to the goal.

As in A* search, bi-directional search can be guided by a
heuristic estimate of the remaining distance to the goal (in the
forward tree) or from the start (in the backward tree).

Ira Pohl was the first one to design and implement a bi-
directional heuristic search algorithm. Andrew Goldberg and
other are explaining how the correct termination for the
bidirectional Dijkstra’s Algorithm has to be.

DIJKSTRA’S Algorithm

Dijkstra's algorithm solves the single-source shortest-path
problem when all edges have non-negative weights. It is a
greedy algorithm and similar to Prim's algorithm. Algorithm
starts at the source vertex, s, it grows a tree, T, that ultimately
spans all vertices reachable from S. Vertices are added to T
in order of distance i.e., first S, then the vertex closest to S,
then the next closest, and so on. Following implementation
assumes that graph G is represented by adjacency lists.

DIJKSTRA (G, w, s)

1. INITIALIZE SINGLE-SOURCE (G,s)

2. S ← { } // S will ultimately contains vertices of final
shortest-path weights from s

3.Initialize priority queue Q i.e., Q ← V[G]

4.while priority queue Q is not empty do

 5. u ← EXTRACT_MIN(Q) // Pull out new vertex

6. S ← S�{u}
 // Perform relaxation for each vertex v adjacent to u

 7. for each vertex v in Adj[u] do

 8. Relax (u, v, w)

Veera RaghavaRao Atukuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3754-3756

3755

CONCLUSION

In this paper, we proposed a Routing schemes in a three-tier
framework for intruder information sharing in sensor
networks and bypass the data when the intruder is in the
network. By finding the different routes in the network. The
framework consists of a verifiable intruder reporting (VIR)
scheme, a quorum-based caching (QBC) scheme for system-
wide propagation of intruder information, and a collaborative
Bloom Filter (CBF) scheme for local management of intruder
information. For find the routing we are using Bidirectional
Heuristic Search and Dijkstra algorithm. Extensive analysis
and simulation are also conducted to verify the efficiency of
the proposed framework as long as the system parameters are
carefully chosen.

ACKNOWLEDEMENT

Thanks to Management of Malineni Lakshmaiah Group of
Educational Institutions and to the Princial Dr.J.AppaRao,
our Colleagues and Friends of Malineni Lakshmaiah
Women’s Engineering College.

REFERENCES
[1] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating Routing

Misbehavior in Mobile Ad Hoc Networks,” ACM MobiCom, pp. 255–
265, August 2000.

[2] Bin Tong, Santosh Panchapakesan, and Wensheng Zhang The
Department of Computer Science Iowa State University Ames, IA
50011

[3] G. Wang, W. Zhang, G. Cao, and T. La Porta, “On Supporting
Distributed Collaboration in Sensor networks,” MILCOM, pp. 752–757
Vol.2, October 2003.

Veera RaghavaRao Atukuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3754-3756

3756

